Characterization of The Light Response of the Xenon-10 Dark Matter Detector

> Roman Gomez Rice University Xenon Collaboration

> > ADOE and NSF Funded Project

Introduction

Xenon Scintillation

•Vacuum UV wavelength centered at ~178 nm

•S1- Primary Scintillation Signal occurs in Liquid Phase

•S2- Proportional Scintillation In Gas Phase

Data Comparison

•Activated Xenon 160 keV

Isotropic Distribution of Events

Motivations

- Geant4 Monte Carlo Simulations Currently deal with Position Reconstruction using Proportional Scintillation Signals.
- S1 Collection Efficiency in the Sensitive Region.
- Understand Unusual Events in Sensitive Volume and Signal production in Charge insensitive Region.

Improvement Possibilities for Upgrade to detector.

Simulation Geometry and Procedure

10 keV Alpha particles
5 mm steps in x,y,z
~10000 photons at each point

•Charge Sensitive and Insensitive Regions

Simulations Compared to Data: Sensitive Region: Light Response

Simulations Compared to Data: PMT Patterns

Simulations: Charge Insensitive Region

Comparison S2 Patterns: Simulation and Data

Summary

•Simulations and data show similarities in profiles

•Need to understand what causes the "turning over" effect at higher Z values

•Good concordance between Hit patterns for simulation and data

Acknowledgements

 XENON Collaboration
 Guillaume Plante, Angel Manzur, Kaixuan Ni, Masaki Yamashita
 Uwe Oberlack

Final Note: Events Between PMT's

Simulations: Sensitive Region

Geant4 Simulation

Monte Carlo Process

10 KeV Alpha Particles Released at 5 mm intervals in x,y,z.

Scintillation Yield In liquid Xenon Set to 1e6 photons/MeV~10000 photons at each point.

Probe both Reverse Field and Sensitive Regions.