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•  1933-> Using Virial Theorem to 
analyze Coma cluster motion, 
found the visible mass was too 
small to explain high velocities 
of galaxies 

•  Missing mass could be dark 
matter 
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Vera Rubin 

Ø  1970-> Rubin measured 
rotational velocity of spiral 
galaxy as a function of 
radius 

Ø  Used Newtonian 
Mechanics                          
to compute mass 

Ø  Velocity doesn’t obey   
    



Ø  Two hot x-ray gas clouds 
(red) collide like a shock 
wave, producing a bullet 
shape 

Ø Dark matter (blue) passes 
right through each other 
with no interaction aside 
from gravitational force  
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Bullet Cluster 



Ø  Leading dark matter candidate because                                          
it agrees nicely with super symmetry  

Ø Non-baryonic matter 

Ø  Interact with weak force 

Ø Neutral in charge and color 

Ø  nonrelativistic 

Ø Stable or have lifetimes comparable to                                        
age of Universe 
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Weakly Interacting Massive Particles 
(WIMPs) 



Detecting WIMPs 
Indirect Detection Direct Detection 
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LHC	
  
(Production)	
  

Fermi	
  Gamma	
  
Ray	
  Telescope	
  

XENON100 

Ø Observe particles or 
gamma rays resulting 
from WIMP annihilation or 
decay 

Ø  Look for signal from 
WIMP nuclear recoils 

Ø  Leaders are Dual-Phase, 
liquid noble gas detectors 
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Direct Detection 
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Ø Simultaneous 
measurement of ionization 
and scintillation signals 
enables XENON to 
discern between nuclear 
and electronic recoils 



Ø 161kg of LXe 

Ø Optimize design for low 
energy threshold 

Ø Purify Xenon 

Ø Optimize shielding 
(underground in Gran 
Sasso, Italy) 

07/31/14 Haley	
  Pawlow,	
  XENON	
   10	
  

XENON100 
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Time Projection Chamber (TPC) 
 
Ø WIMP scatters with Lxe nucleus, 

causing a nuclear recoil where 
atom collides into other atoms 

Ø Atoms can either be ionized, 
releasing electrons, or excited, 
emitting photons which are 
detected by the photomultiplier 
tubes (scintillation->S1) 

Ø Remaining electrons accelerated 
across electric field to top gas, 
producing secondary light 
(ionization->S2) 



Ø light yield (s1) = total photons/Energy 

Ø charge yield (s2) = # of electrons/Energy 

Ø  S2/S1 differentiates between electronic(gamma/beta) 

and nuclear recoils 

Ø Leff is largest systematic error in reported LXe WIMP 

searches 
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Measuring S1 and S2 



Ø S2/S1 differentiates between 
electronic(gamma/beta) and 
nuclear recoils 

Ø Using drift time and Voltage, 
calculate distance (z direction) 

Ø PMTs record x and y coordinate 
of event (hit pattern) 

Ø Reconstruct position of event 
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Position of event 
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Ø Analyze how different particles, like neutrons 
and gamma rays, interact with LXe atoms 

 
Ø Measure s1 and s2 to distinguish 

electromagnetic background from WIMPs in 
XENON 

 
Ø Need to convert from measured scintillation in 

Photomultiplier tubes (PMTs) to energy 
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neriX: How can we calibrate XENON? 



Ø Neutron generator emits 
monochromatic neutrons that 
elastically scatter with atoms 
inside LXe. 

Ø Two organic liquid scintillators 
detect neutrons at fixed signal 

Ø Measure light and charge yield 

07/31/14 Haley	
  Pawlow,	
  XENON	
   16	
  

neriX Experimental setup 
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neriX Detector 
Ø Same Dual-phase, TPC concept as XENON100 
Ø  neriX has 4 top PMTs and 1 bottom PMT 
Ø XENON100 has 98 top PMTs and 78 bottom PMTs 
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Ø  Incident photon emits a single photoelectron (PE) from 
photocathode 

Ø PE attracted to dynode by applied electric field 

Ø PE accelerates, releasing more e-’s, which are all attracted to 
second dynode 

Ø Dynodes multiply amount of charge via photoelectric effect  

Ø PMT Gain = # of e produced/photoelectron 
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PMTs 



Ø PMTs give us a voltage signal, we need to convert to 
photoelectrons using the gain 

Ø With the gain we can measure s1 and s2 (light and 
charge signals) 

07/31/14 Haley	
  Pawlow,	
  XENON	
   20	
  

Why do we need to calibrate 
PMTs? 

Bottom PMT 
array for 

XENON100 



Ø Number of PE is a 
poisson distribution:  
90% of signal is noise, 
10% of signal from 1 
PE. This way 
contribution of multiple 
PE is minimized 

Ø  1st peak around zero is 
noise, second peak 
from one photoelectron 
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Gaussian Distribution of PMTs 
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Gaussian Distribution of PMTs 
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PMT Calibration 
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Ø  4 top PMTs and 1 
bottom PMT, 4 
channels each  

Ø PMT Gain = # of 
electrons 
produced/PE 

Ø PMT gain 
increases 
exponentially, 
seen as line in 
log linear plot 
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Neutron Generator 
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1. Heat filament and release 
deuterium gas 

2. As cathode heats up, electrons 
extracted to the grid 

3.  Ionized deuterium gas ions 
accelerate toward titanium 
deuteride target 

4.  Ions collide with target and are 
either stopped or produce 
neutrons 

5. Neutrons are mono-energetic, 
minimizing spread in neutron 
energy at a 90 degree angle 

1	
  

2	
  
3

45	
  



Ø Increase voltage 40kV->100kV  

Ø With a higher voltage we get greater 

neutron flux 

Ø Faster data collection 
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Why modify Neutron Generator holder? 



Ø Need to avoid electrical 
discharge at HV cable 
connection to neutron 
generator  

Ø Analyze electrical 
breakdown (dielectric 
strength) for different 
dielectric materials (Teflon, 
oil, and air) 
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Electrical Breakdown across 
HV cable 



Electrical Breakdown in Air 
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At the HV cable radius, the electric field exceeds electrical 
breakdown for 100kV 
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Electrical Breakdown in Oil 
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At the HV cable radius, the electric field exceeds electrical 
breakdown for 100kV 
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Electrical Breakdown in Teflon 
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At the HV cable radius, the electric field is well below electrical 
breakdown for 100kV 
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Ø Optimize ratio between 
Teflon and oil to produce 
least amount of neutron 
scatters 
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GEANT4 Monte Carlo Simulation 

Teflon cut radius  
=  

radius of mineral oil 

*Image	
  from	
  GEANT4	
  simulation	
  



Example: Teflon/oil = 1.5743 
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52% of neutrons scatter 



Teflon/Oil Scattered/Total 
neutrons 

1.57 0.522 

0.5 0.522 

0.19 0.520 
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Conclusions 

Ø  Largest Teflon cut 
produces least amount 
of neutron scatters 

Ø Amount of scattering is 
negligible +/- 0.4% 

Ø Use maximum amount 
of Teflon in holder 
design to keep neutron 
generator fixed 



SolidWorks Model for Neutron Generator Holder 

07/31/14 Haley	
  Pawlow,	
  XENON	
   34	
  

Ø  Increase holder 
tube diameter from 
2->3’’ 

Ø  Maximize use of 
Teflon to minimize 
neutron scatters  



SolidWorks Neutron Generator Holder Model 
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ü HV cable surrounded with 
Teflon to avoid electrical 
breakdown 

ü Neutron Generator 
firmly secured in carrier 

with Teflon/oil ~1.5 



Ø Measure nuclear and electronic recoils by 
varying electric fields across chamber  

Ø More precise measurement of gamma 
rays at low energy with Cs 137 Compton 
scatters 
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Next Steps for neriX 
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Takeaways	
  

ROOT/C++ GEANT4  SolidWorks	
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Gain = # of electrons/photoelectron emitted 

PMT Quantum Efficiency = 35% (# photons/PE) 

Number of photons from PMT 

Light Detection Efficiency 

Total # photons emmited (type, Energy, E field) 
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Measuring # of photons from PMT 



 
Relative scintillation efficiency of nuclear recoils 

(Leff) 
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Leff	
  is	
  largest	
  systematic	
  error	
  in	
  
reported	
  LXe	
  WIMP	
  searches	
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Monte Carlo Simulation of ideal 
Teflon/Oil ratio 
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Teflon/oil= 0.50 
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52 % of neutrons scatter 



Teflon/oil = 0.191 
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52% of neutrons scatter 


