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Introduction: what is dark matter? 

• Originally postulated by Zwicky in 
1933 to explain unseen mass in 
the Coma cluster. 

• Major evidence in galaxy velocity 
distributions discovered by Rubin 
in 1970. 

• Observational evidence at all 
scales (galactic velocity 
dispersions, gravitational lensing, 
cosmic background, etc.) 

• Electromagnetically neutral, 
hence “dark”; interacts mostly 
through gravitation. 

Velocity curves for multiple spiral galaxies.  
Credit: Rubin, Ford, and Thonnard (Astrophysics 

Journal 238: 471-487, 1980) 



What is dark matter, cont. 

Artist’s impression of the dark matter halo around the Milky  Way. 
Credit: European Space Observatory/L. Calçada 

• Probable model is a weakly-
interacting massive particle 
(WIMP); only interacts with the 
weak force and gravity, mass 
in the GeV+ range. 

• Particle physics theories 
independently predict WIMP-
like particles (supersymmetry, 
Kaluza-Klein). 

• “Cold” (non-relativistic) 
particle; expected to form 
halos around cosmic 
macrostructures, enabling 
direct detection. 
 



Detection principle 
• WIMP-nucleon elastic scattering deposits a small amount of energy in 

the target material/volume. 
• Signal is very small, phenomenally rare and buried in enormous 

background. 
• Detecting methods/materials can be selected to amplify or transduce 

the signal into a readable output. 

Cross-sections  larger 
than 10-45 cm2 

currently excluded!  

Current and projected cross-section 
sensitivity limits for WIMP-nucleon 

interactions. 
Credit: Andrew Brown 



The XENON1T detector 
• Dual-phase xenon time-projection chamber located 

underground at LNGS. 
• Xenon stopping power reduces background in 

internal “fiducial” volume (1 ton of liquid xenon for 
XENON1T), target volume “self-shields”. 

• Ionization electrons generate post-scattering 
scintillation; ratio of the two signals discriminates 
background further. 



The ReStoX system 

• A sophisticated 
cryogenic storage 
and recovery system 
for the xenon used in 
the XENON1T. 

• Can keep up to 6 tons 
of xenon liquid via 
built-in cryogenics, 
can also store in 
gaseous phase in 
case of power failure. 

• Can also 
continuously radio-
purify xenon held in 
storage. 
 



The ReStoX recovery line 

Valve 
located 

here 

30% cross-
section drop 

• The entire line consists of 
approximately 21 meters of 
pipe. 

• Sections entering and leading 
out of the main cryogenics 
system are inclined at 5 degree 
angles. 

• Piping inside of the cryostat 
modeled as going straight 
down. 

• Various bends and cross-
section changes present. 
 
 



Project emphasis 

• During an emergency failure, pressure-
driven flow drives xenon into the storage 
sphere from the detector  cryostat. 

• Recovery characteristics determine the 
cooling parameters for the sphere. 

• Important to know relevant thermo-fluidic 
phenomena inside of the recovery line to 
ensure safe operation and improve 
performance. 



Physical phenomena 
• Pressure gradients in the cryoline induce xenon flash 

evaporation & dual-phase flow. 
• The density reduction generates a convective velocity gradient 

to preserve a constant mass flow rate. 
• The increased velocity creates larger pressure losses towards the 

end of the pipe, inducing steeper pressure gradients. 
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Solving methodology 

• Highly turbulent dual-phase 
flow with large calculation 
complexities. 

• Coupled-field thermo-
fluidics problem; 
considerably better to 
create original hand-coded 
model instead of using pre-
made suites (COMSOL). 

•  This kind of model is 
exceptionally time-efficient 
and can properly model 
“minor” pressure losses. 

1
𝑓

= −2 log10
𝜀

3.7𝐷 +
2.51

𝜌𝜌𝜌
𝜇 𝑓

 

 

Turbulent friction factor is both 
implicit and a function of velocity! 



Preliminary models 

• The first preliminary model solves for the 
velocity with a simple Bernoulli analysis as a 
function of the pressure difference, and using 
constant liquid xenon properties.  

• Used to get basic order-of-magnitude 
estimates for future model validation, and to 
see the relative magnitude of loss sources 
(friction, valve, geometry) 



First preliminary model 
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Preliminary models, pt. 2 

• The second preliminary model takes into 
consideration evaporation in the recovery 
line, and different physical approximations 
were used to calculate average pressure 
losses in the line. 

• High variations in the results for slightly 
different physical assumptions are indicative 
of this model being too coarse for predictive 
use. 



Second preliminary model 
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~70% increase! 



Finite-difference model 

• Discrete finite-difference model calculates the 
thermodynamic properties of the xenon as it flows 
through the pipe by solving the Bernoulli equation 
between nodes. 

• Lagrangian model, assumes a homogeneously mixed 
dual-phase flow which evolves isenthalpically. 

• Can calculate pressure losses to an arbitrary precision. 
• Requires solving implicit equations at every node; can 

take enormous amounts of time to solve for small 
node distances. 



Finite-difference model, pt. 2 
Initial thermodynamic 

state defined 

Trial inlet velocity 
selected 

𝑃𝑛𝑛𝑛𝑛 = 𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + ∆𝜌𝜌𝜌 − ∆𝑃𝑙𝑙𝑙𝑙  

𝜒𝑛𝑛𝑛𝑛 =
𝜒ℎ𝑣 + 1 − 𝜒 ℎ𝑙 − ℎ𝑙𝑛𝑛𝑥𝑥

ℎ𝑣𝑛𝑛𝑥𝑥 − ℎ𝑙𝑛𝑛𝑥𝑥
 

New density & 
viscosity calculated 

New velocity 
calculated,  

𝜌𝜌𝜌 = constant 

Next node 

𝑃𝑒𝑒𝑒 =
𝑃𝑠𝑠𝑠𝑠𝑠𝑠?  

No 

Output data 
Yes 



Results 
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Results 
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Calculated
Linear fit



Results 
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Calculated
Cubic fit

Very high flow rates at 
low pressure differences! 
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Calculated
Linear fit

Results 

The flow rate 
depends strongly on 

the beginning/end 
states! 



Conclusions 

• We can guarantee recovery between 2.25 and 3.25 hours at 
a ReStoX sphere pressure of 0.9 bar. 

• Valve contributes heavily to thermo-fluidic phenomena in 
the pipe.  

• Linear relationship between flow rate and pressure allows 
excellent recovery predictions for arbitrary cryostat 
pressure variations. 

• Mach numbers well clear of subsonic range (𝑀𝑚𝑚𝑚 = 0.21) 
• Gaseous volume fraction evolution indicates xenon rapidly 

turns into mist. 
• High flow rates even at high ReStoX pressures due to 

nonlinearity between pressure gradient and flow velocity. 



Future Work 

• Validate model results with in-situ testing. 
• Include pre-evaporation single-phase flow 

into the current model. 
• Incorporate outward heat loss (remove 

isenthalpic assumption). 
• Include initial transient phenomena into the 

model. 
• Optimize calculation by removing 

homogeneous flow assumption. 
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Questions? 
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